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Quasispecies evolution on a fitness landscape with a fluctuating peak
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A quasispecies evolving on a fitness landscape with a single peak of fluctuating height is studied. In the
approximation that back mutations can be ignored, the rate equations can be solved analytically. It is shown
that the error threshold on this class of dynamic landscapes is defined by the time average of the selection
pressure. In the case of a periodically fluctuating fitness peak, we also study the phase shift and response
amplitude of the previously documented low-pass filter effect. The special case of a small harmonic fluctuation
is treated analytically.
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I. INTRODUCTION

A system consisting of self-replicating genomes can
studied using the quasispecies model@1#. The evolutionary
dynamics is driven by point mutations and selection defin
by an underlying fitness landscape. A quasispecies is the
equilibrium distribution of closely related gene sequenc
localized around one or a few sequences of high fitness
the case of a static fitness landscape the kinetics of th
simple systems has been studied in great detail; see fo
stance Refs.@1–8#.

The main result derived from the model is the appeara
of an error threshold~or error catastrophe! as an upper bound
on the mutation rate above which no effective selection
occur. This places limits on the maintainable amounts of
netic information@1,2# in simple biological systems.

Until now studies of quasispecies have mainly focused
static fitness landscapes. The main reason for this is per
the rather severe mathematical difficulties appearing w
the fitness landscape is allowed to be time dependent~these
difficulties will be discussed in more detail later!. However,
many organisms in nature live in a quickly changing en
ronment. In this paper, we show that a simple approxima
allow the population dynamics to be analyzed analytica
when the fitness landscape consists of a fluctuating si
peak. The expression for the error threshold is obtained f
the expression in the static case by replacing the height o
fitness peak by the time average of the height of the fluc
ating peak. We also study how the phase shift between fitn
oscillations and population dynamics depends on the
quency in the case of a small harmonic fluctuation.

II. QUASISPECIES IN DYNAMIC ENVIRONMENTS

A quasispecies consists of a population of self-replicat
genomes, where each genome is represented by a seq
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of basessk , (s1s2¯sn). We assume that the bases are
nary, skP$1,0% and that all sequences have equal lengthn.
Every genome is then given by a binary string~011001̄ !,
which also can be represented by an integerk5S j sj2

j (0
<k,2n).

To describe how mutations affect a population, we defi
Wk

l as the probability that replication of genomel gives ge-
nome k as offspring. We only consider point mutation
which conserve the genome lengthn.

We assume that the point mutation ratem512q ~whereq
is the copying accuracy per base! is constant in time and
independent of the position in the genome. We can then w
down an explicit expression forWk

l in terms of the copying
fidelity:

Wk
l 5mhklqn2hkl5qnS 12q

q D hkl

, ~1!

wherehkl is the Hamming distance between genomesk and
l. The Hamming distancehkl is defined as the number o
positions where the genomesk and l differ.

The equations describing the dynamics of the populat
take a relatively simple form. Letxk denote the relative con
centration andAk(t) the time-dependent fitness of genomek.
We then obtain the following rate equations:

ẋk~ t !5(
l

Wk
l Al~ t !xl~ t !2e~ t !xk~ t !, ~2!

wheree(t)5S lAl(t)xl(t), and the dot denotes a time deriv
tive. The second term ensures the total normalization of
population@S lxl(t)51# so thatxk(t) describe relative con-
centrations.

Equation~2! can be linearized by a change of variab

yk(t)5e* t0

t e(s)dsxk(t). Giving a set of linear differential
equations

ẏk~ t !5(
l

Wk
l Al~ t !yl~ t !. ~3!
©2002 The American Physical Society01-1



o
te
g

th

e-

th
w
e

-
m

tio
tly

th

e
i

lic
lik
g
pe
ha
g
e

e

s
an
m
ct
h

e a

-
k,
pe-
he
the
eth-

obal
pes
The

died

ak
nd
y
as a
by

fit-
n the
ate
old
the
rate

a

se-
hen

n to
ase
the
the
e-

ess

n
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In the classical theory introduced by Eigen and c
workers @1,9,10#, the fitness landscape is static. The ra
equations~2! can then be solved analytically by introducin
a change of coordinates that makes them linear, and
solving the eigenvalue system for the matrixWk

l Al . The
equilibrium distribution is given by the eigenvector corr
sponding to the largest eigenvalue.

When the fitness landscape is time dependent, this me
cannot be applied. A time-ordering problem occurs when
define exponentials of time-dependent matrices, since in g
eral the matrixWk

l Al(t) does not commute with itself at dif
ferent points in time. Formally we may describe the dyna
ics of the system by atime-ordered exponent

y~ t !5exp1H E
t0

t

Ô~s!dsJ y0

5 (
n50

` E
t0

t

dtn¯E
t0

t2
dt1 Ô~ tn!¯Ô~ t1!y0

5 (
n50

`
1

n! Et0

t

dtn¯E
t0

t

dt1 T@Ô~ t1!¯Ô~ tn!#y0 , ~4!

whereÔ(t) is the operator notation for the matrixWk
l Al(t)

and the symbolT@•# shows that the operatorsÔ(t i) are or-
dered from the right to the left as time increases. Equa
~5! is, however, mainly of formal use and does not direc
increase our understanding of the dynamics.

For a more direct approach, we may consider using
relation

eXeY5eH~X,Y!, ~5!

whereH(X,Y) is a Lie series~sometimes referred to as th
Hausdorff series!, i.e., a series whose terms are elements
the Lie algebra generated byX andY. For general~noncom-
muting! the first few terms read

H~X,Y!5X1Y1
1

2
@X,Y#

1
1

12
~†X,@X,Y#‡1†@X,Y#,Y‡!1¯ . ~6!

To the best of our knowledge, there is no reasonable exp
expression for all the terms in the Hausdorff series. Just
Eq. ~5!, it is, therefore, only of limited use when analyzin
the linearized rate equations on dynamic fitness landsca

Later in this paper, we make a simple approximation t
makes the rate equations one dimensional; time orderin
then no longer necessary and analytical solutions are r
tively easy to derive.

Much of the work on quasispecies has focused on fitn
landscapes with one gene sequence~the master sequence!
with superior fitnesss compared to all other sequence
These are viewed as a background with fitness 1. These l
scapes are referred to as single peaked landscapes. The
reasons why this particular fitness landscape has attra
much attention is because it is the simplest landscape ex
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iting an error threshold and it is also possible to calculat
simple algebraic relation for the threshold@2#. On this land-
scapes, the master sequence is denotedx0 .

In a previous paper@17#, we studied quasispecies evolu
tion on a fitness landscape with a single ‘‘wandering’’ pea
i.e., the fitness peak where static during predefined time
riods and then moved instantly to a new location in t
neighborhood of the old peak. In this case, we may solve
rate equations during the static periods by the standard m
ods and then match these solutions together to find a gl
solution. In this paper, we focus on single peaked landsca
where the height of the fitness peak is time dependent.
fitness landscape is then given by

Ak~ t !5H s~ t ! if k50

1 otherwise
. ~7!

This class of time-dependent landscapes has been stu
extensively by Wilke and co-workers@11,12#. They investi-
gated the behavior of a periodically fluctuating single pe
landscape by numerically integrating the dynamics to fi
the limit cycle of the concentrations for a full period. The
also find that the population response can be described
low-pass filter~this effect had already been pointed out
others, see e.g., Refs.@14–16,18#!. Wilke, Ronnewinkel, and
Martinetz also studied how the phase shift between the
ness landscape and the population response depend o
fluctuation frequency. Further they numerically demonstr
that for rapidly fluctuating landscapes, the error thresh
occurs when the time average of the fitness falls below
corresponding static threshold. In this paper, we demonst
that all these effects can be studied analytically using
simple approximation.

Figure 1 shows how the concentration of the master
quence responds to a sudden, sharp jump in its fitness. W
the fitness changes it takes some time for the populatio
reach the new equilibrium. It is this delay that causes a ph
shift between a periodically changing fitness function and
response in the concentrations. The relaxation time of
population to the appropriate equilibrium distribution d

FIG. 1. Concentration of the master sequence when the fitn
peak makes a sudden jump. The fitness is given bys510 whent
P@10,12#, s55 otherwise. The genomic copying fidelity is give
by Q50.7.
1-2
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QUASISPECIES EVOLUTION ON A FITNESS . . . PHYSICAL REVIEW E 65 031901
pends on both the fitness values of the landscape and
mutation rate. For extremely slow and smooth changes in
fitness the population will effectively reach equilibrium
every point in time. Thus the continued existence of a q
sispecies will depend on the local dynamics of the landsca
When the landscape changes quickly the population will
to follow the changes adequately and thus responds to
landscape dynamics in a way that is typical of a low-p
filter. The following section examines the fluctuating sing
peak landscape in some detail. In particular, we introduce
approximation that lets us find an analytic form for the
laxation time of the population, and the phase lag it int
duces in a periodic landscape.

III. APPROXIMATE QUASISPECIES DYNAMICS

We now introduce a simple approximation of the mod
presented above. In this approximation, we can solve the
equations and find an expression for the concentration of
master sequencex0(t). In the limit of long chain length (n
@1), we can neglect back mutations from the background
the master sequence. This is the same approximation us
used to simplify the analysis of the static single peaked la
scape. A simplified one-dimensional version of the rate eq
tion of the following form:

ẋ0~ t !5Qs~ t !x0~ t !2e~ t !x0~ t !, ~8!

where Q5qn is the copying fidelity of the whole genom
ande(t)5(s(t)21)x0(t)11.

Figure 2 compares the concentration of the master
quence calculated by solving approximation 8 and by
merically integrating the full rate equation~2!. The figure
shows that the approximation is quite accurate.

Since this equation is one dimensional there is no tim
ordering problem and it can be solved analytically for no
periodic peak fluctuations. Equation~8! can be transformed
to a linear form by introducing a new variabley(t)5@Q
2x0(t)#/@(12Q)x0(t)#. This gives

ẏ~ t !512@Qs~ t !21#y~ t !, ~9!

FIG. 2. Concentration of the master sequence calculated u
the approximation 8~dashed! and by numerically solving the rat
equations~2! ~solid!. The fitness is given bys51015 sin(4t). The
genomic copying fidelity is given byQ50.7 and the genome lengt
n525.
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which can be solved. Substituting back gives the concen
tion of the master sequence

x0~ t !5x0

expH E
0

t

@Qs~s!21#dnJ
11x0E

0

t

expH E
0

s

~Qs~u!21!duJ @s~s!21#ds

.

~10!

Since we are only interested in the long time behavior
the system, we can ignore transients carrying memory fr
initial values. Assuming exp*u

t @Qs(s)21#ds@1 gives

x0~ t !5
Q

11~12Q!E
0

t

expH E
s

l

@Qs~u!21#duJ ds

.

~11!

This is a generalization of the static expression for
asymptotic concentration:

x0
s5

Qs21

s21
. ~12!

On a static single peaked fitness landscape there is a p
transition in the concentration distribution when the copyi
fidelity decreases below a critical value@2,13#. At high mu-
tation rate the selective advantage of the master sequ
due to its superior fitness is no longer strong enough for
gene sequences to be localized in sequence space. In
they diffuse over the entire sequence space, and the dist
tion becomes approximately uniform. This is generally
ferred to as the error catastrophe or error threshold and is
of the main implications of the original quasispecies mod
By making the same approximation as above, i.e., assum
no back mutations onto the master sequence, the static l
scape error threshold can be shown to occur whenQ51/s.
In other words, the transition occurs when the selective
vantage of the master sequence no longer is able to com
sate for the loss of offspring due to mutations. This can a
be seen from Eq.~12! that defines the stationary distributio
of the master sequence in the static case.

One has to be careful when discussing the error thresh
on a fluctuating peak. The fitness can, for example, slo
move from being strong enough to localize the populat
around the peak to being so weak that the population d
calizes, and then back again. If we, however, consider
average over a time scale much longer than the fluctua
time of the fitness peak, a sensible definition of the er
threshold can be made based on the average concentrati
the master sequence. The time average of the concentra
can be found by rewriting Eq.~8! as differentials

E dx0

x0
5E $Qs~ t !212@s~ t !21#x0~ t !%dt. ~13!

The concentration of the master sequence is positive.
left-hand side of Eq.~13! is, therefore, positive and the las
term in the integral2@s(t)21#x0(t) on the left-hand side is

ng
1-3
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MARTIN NILSSON AND NIGEL SNOAD PHYSICAL REVIEW E65 031901
negative. This implies that forx0(t) to be positive as time
goes to infinity, we must assume*@Qs(t)21#dt.0. The
fluctuating time-dependent equivalent to the static er
threshold is, therefore, given by

Qfluct. crit.5
1

^s& t
. ~14!

This shows that the error threshold on a fluctuating fitn
peak is determined by the time average of the fitness, if
fluctuations are fast compared to the response time of
population.

Equation~11! indicates that the response time of the s
tem is approximately given by@Qs(t)21#21, i.e., the rela-
tive growth of the master sequence compared to the b
ground. For the time average mentioned above to be
interesting parameter the fluctuations of the fitness p
must, therefore, be faster than this response time; only
this kind of environmental dynamics is it sensible to talk
terms of the average concentration of the master seque
Thus, if the fluctuations occur on a time scale faster than
response time of the quasispecies, then the error thresho
defined by Eq.~14!. For extremely slow changes the syste
will effectively be in equilibrium around the current value
the fitness. For slightly faster changes the response of
population will lag somewhat behind the changes in selec
environment. In these cases it is more interesting to study
minimal concentration of the master sequence, which occ
when the fitness peak has a minimum~as we shall see late
the phase shift decreases when the fluctuation frequency
creases!.

When the full replicator equations for a rapidly fluctuatin
peak are numerically integrated, the time-averaged quasi
cies distribution displays an error catastrophe at high e
ratesm512q. In Fig. 3 the fitness peak fluctuates period
cally with s(t)51015 sin(t). The average fitness is give
by ^s& t510 and the genome lengthn525 and thus Eq.~14!

FIG. 3. Time-averaged quasispecies distribution is shown a
function of the error ratepm5q21. The figure shows the numerica
solution to the full rate equations. The fitness peak is defined
s(t)51015 sin(t) and the genome length isn525. The error
threshold is located atpm'0.085, corresponding toQfc50.109,
which can be compared to the approximate valueQfc50.1 pre-
dicted by Eq.~14!.
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predicts the error threshold to occur atm50.088, which
agrees with the value found by numerically integrating t
equations of motion directly. The analysis in this secti
demonstrates that by making the error tail approximation
reducing the dynamics to one-dimensional form, an anal
form exists for the error threshold on fast moving lan
scapes. This one-dimensional formulation removes the n
to time order the changes in selective advantage of the la
scape. This allows the integrals for the time history of t
master-sequence concentration to be solved explicitly in
~10!.

IV. PHASE SHIFTS ON PERIODIC LANDSCAPES

To study how the master sequence responds to chang
the height of the fitness peak it is convenient to assume
the fluctuations are periodic. In this case it follows imme
ately fromFloquet’s theorem~also known as theBloch theo-
rem in statistical physics! that the solutions to the rate equ
tions also are periodic with the same frequency. It th
makes sense to speak of the amplitude of the oscillation
concentration and of the phase shift between the concen
tion and the fitness. It is intuitively clear that when the fitne
peak is oscillating slowly„compared to the response tim
@Qs(t)21#21

… there will be a very small phase shift; th
population will have time to reach an equilibrium about e
ery value ofs(t). The amplitude of changes in the maste
sequence concentration will for the same reason, be as l
as possible. This result, together with the time-averaging
fect found in the previous section, indicates that the popu
tion responds to the driving of the environment with a lo
pass filter effect. In one-dimensional population gene
models this phenomenon has been noted for some time@14–
16,18#. Wilke, Ronnewinkal, and Martinetz@11# demon-
strated via simulations that the same filtering occurred
quasispecies evolution on a periodically fluctuating sin
peak. Noting that the maxima and minima in concentrat
occurs whenẋ050, we can find a relation between the pha
shift ~between the concentration and fitness fluctuations!, and
the amplitude of the fitness fluctuations. Lettx max be the
time when the concentration has a maximum. Similarly,
fitness is at a maximum at timets max. Thus the phase shif
between the two isd5tx max2ts max. From Eq.~8! the con-
dition for the maximum value ofx0 during a full cycle can be
derived

max@x0~ t !#5
Qs~ ts max1d!21

s~ ts max1td!21
. ~15!

In general, there is no closed analytic expression for t
phase shift~d!, or the response amplitude of the mast
sequence concentration. When the fluctuations of the fitn
peak is a small harmonic oscillation Eq.~15! becomes ana-
lytically tractable. For such fluctuations

ẏ~ t !512@Qs~ t !21#y~ t !, ~16!

s~ t !5s̄1e sin~vt !. ~17!
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From Eq.~11! it is reasonable to assume the solution to be
the formy(t)51/(Qs̄21)1u(t), whereu(t) is small com-
pared to the average. Ignoring higher-order terms Eq.~8! can
be written in terms of the perturbationu(t) as

u̇~ t !5~12Qs̄ !u~ t !2
eQ sin~vt !

Qs̄21
. ~18!

This differential equation can be solved to obtain

u~ t !52
eQ

~Qs̄21!A~Qs̄21!21v2
sin~vt2d!, ~19!

tan~d!5
v

Qs̄21
. ~20!

In Eq. ~19! and~20! transients have been ignored since th
decay exponentially ase2(Qs̄21)t. Thus the frequency of the
oscillations is normalized by the~average! response rate o
the populationQs̄21.

Substituting this back into the expression forx0(t) gives

x0~ t !5
x̄

12
e~12Q!sin~vt2d!

~s̄21!A~Qs̄21!21v2

, ~21!

wherex̄5(Qs̄21)/(s̄21).
The characteristic behavior of a low-pass filter is clea

shown in Eq.~20! and~21!. As the frequency of the fluctua

FIG. 4. Response in concentration of the master sequence~solid
line! as the fitness peak oscillates according tos(t)5101sin(4t).
The genomic copying fidelity isQ50.7. The dashed line show
s(t), scaled to fit in the plot. Note the phase shift between
fitness function and the concentration response.
.

03190
f

y

tions increases, the amplitude of the concentration respo
decreases and the phase shift converges top/2. Figure 4
shows how a population responds to harmonic oscillation
the fitness peak. The phase shift makes the concentratio
the master sequence reach its maximum when the actua
ness has already decreased below maximum.

V. CONCLUSIONS

In this paper, we have shown that the time dynamics o
quasispecies on a fluctuating peak can be studied unde
standard no back-mutation approximation. The general tim
ordering problem stemming from a time-dependent la
scape disappears since the rate equation becomes one d
sional. We show that the time-dependent equivalent to
static error threshold is determined by the time average of
fluctuations of the fitness peak. An expression for the typi
response time for a population is given in terms of copy
fidelity and selection pressure. We also show that for sm
periodic fluctuations the time dynamics of the population h
a phase shift and a low-pass filter amplitude response. A
lytic expressions for the phase shift and the amplitude
derived in the special case of small harmonically oscillat
fluctuations.

ACKNOWLEDGMENTS

When doing this work N.S. and M.N. were supported
SFI core funding grants. N.S. would also like to acknow
edge the support of Mats Nordahl at Chalmers University
Technology while preparing this manuscript. We also tha
Mats Nordahl for valuable comments and discussions.

e
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