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Quasispecies evolution on a fitness landscape with a fluctuating peak
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A quasispecies evolving on a fitness landscape with a single peak of fluctuating height is studied. In the
approximation that back mutations can be ignored, the rate equations can be solved analytically. It is shown
that the error threshold on this class of dynamic landscapes is defined by the time average of the selection
pressure. In the case of a periodically fluctuating fitness peak, we also study the phase shift and response
amplitude of the previously documented low-pass filter effect. The special case of a small harmonic fluctuation
is treated analytically.
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[. INTRODUCTION of basess,, (s;S,'-'s,). We assume that the bases are bi-
nary, sy,e{1,0t and that all sequences have equal length
A system consisting of self-replicating genomes can beEvery genome is then given by a binary strif@1001:-),
studied using the quasispecies mofigl The evolutionary ~ which also can be represented by an intelger>;s;2! (0
dynamics is driven by point mutations and selection definedsk<2").
by an underlying fitness landscape. A quasispecies is then an To describe how mutations affect a population, we define
equilibrium distribution of closely related gene sequencesw, as the probability that replication of genorhgives ge-
localized around one or a few sequences of high fitness. Inome k as offspring. We only consider point mutations,
the case of a static fitness landscape the kinetics of thesghich conserve the genome length
simple systems has been studied in great detail; see for in- We assume that the point mutation rate- 1— ¢ (whereq
stance Refd.1-8]. is the copying accuracy per base constant in time and
The main result derived from the model is the appearancgdependent of the position in the genome. We can then write
of an error thresholdor error catastrophes an upper bound down an explicit expression fa, in terms of the copying
on the mutation rate above which no effective selection cafigelity:
occur. This places limits on the maintainable amounts of ge-
netic information[1,2] in simple biological systems. 1—q) M
Until now studies of quasispecies have mainly focused on WL:th'qV_hk'=qv<T) :
static fithess landscapes. The main reason for this is perhaps

the rather severe mathematical difficulties appearing Wheﬂ/herehm is the Hamming distance between genork@sd

the fitness landscape is allowed to be time dependbate I. The Hamming distancé,, is defined as the number of
difficulties will be discussed in more detail layeHowever, _ positions where the genomésand| differ.

many organisms in nature live in a quickly changing envi-" 1o oquations describing the dynamics of the population

ronment. In this paper, we show that a simple approximatioqake a relatively simple form. Leg, denote the relative con-
allow the population dynamics to be analyzed analyt'ca"ycentration and\,(t) the time-dependent fithess of genoke

when the fitness landscape consists of a fluctuating singlg\/e then obtain the following rate equations:
peak. The expression for the error threshold is obtained from '

the expression in the static case by replacing the height of the
fitness peak by the time average of the height of the fluctu- Xk(t)zE WLA,(t)x|(t)—e(t)xk(t), 2
ating peak. We also study how the phase shift between fithess !

oscillations and population dynamics depends on the fre- . :
quency in the case of a small harmonic fluctuation. wheree(t) =2A,(t)x(t), and the dot denotes a time deriva-
tive. The second term ensures the total normalization of the

population[ %;x,(t)=1] so thatx,(t) describe relative con-
Il. QUASISPECIES IN DYNAMIC ENVIRONMENTS centrations.

Equation(2) can be linearized by a change of variable,

@

A quasispecies consists of a population of self-replicating

t
i _ d . . . . .
genomes, where each genome is represented by a sequeﬂe@)t—_eftoe(s) X(t). Giving a set of linear differential
equations
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In the classical theory introduced by Eigen and co-  *mas
workers [1,9,10, the fitness landscape is static. The rate
equationg2) can then be solved analytically by introducing
a change of coordinates that makes them linear, and the? - 66
solving the eigenvalue system for the matWLA,. The
equilibrium distribution is given by the eigenvector corre- o g5
sponding to the largest eigenvalue.

When the fitness landscape is time dependent, this metho
cannot be applied. A time-ordering problem occurs when we? - 64}
define exponentials of time-dependent matrices, since in gen
eral the matrixVVLA,(t) does not commute with itself at dif- ; 51
ferent points in time. Formally we may describe the dynam-

ics of the system by &me-ordered exponent 10 11 12 13 12 15 °©
t)= té d FIG. 1. Concentration of the master sequence when the fitness
y(t)=exp; {0 (s)dsyo peak makes a sudden jump. The fitness is giverrbyl0 whent
€[10,12, o=5 otherwise. The genomic copying fidelity is given
by Q=0.7.

t ty " N
f dtn"'f dt; O(tp)---O(t1)Yo
o o iting an error threshold and it is also possible to calculate a
¢ t simple algebraic relation for the threshd®]. On this land-
f dtn-~-f dt, T[O(t,)---O(t,)lye, (4  scapes, the master sequence is denrged
to to In a previous papelrl7], we studied quasispecies evolu-
N . ) " tion on a fitness landscape with a single “wandering” peak,
whereO(t) is the operator notation for the mati#Ai(t) e the fitness peak where static during predefined time pe-
and the symboll[ - ] shows that the operatof3(t;) are or- riods and then moved instantly to a new location in the
dered from the right to the left as time increases. Equatiomeighborhood of the old peak. In this case, we may solve the
(5) is, however, mainly of formal use and does not directlyrate equations during the static periods by the standard meth-

Il
p=l
8 ng

1
o n!

n

increase our understanding of the dynamics. ods and then match these solutions together to find a global

For a more direct approach, we may consider using thgolution. In this paper, we focus on single peaked landscapes
relation where the height of the fitness peak is time dependent. The

eXeY = gHOXLY). 5 fithess landscape is then given by
: . : . t if k=0

whereH(X,Y) is a Lie seriefsometimes referred to as the A(t)= o(t) . (7)
Hausdorff seriek i.e., a series whose terms are elements in 1  otherwise
the Lie algebra generated byandY. For generalnoncom- . _ _
muting) the first few terms read This class of time-dependent landscapes has been studied

extensively by Wilke and co-workefd1,12. They investi-
gated the behavior of a periodically fluctuating single peak
landscape by numerically integrating the dynamics to find
the limit cycle of the concentrations for a full period. They
also find that the population response can be described as a
low-pass filter(this effect had already been pointed out by
others, see e.g., Refd4-16,18). Wilke, Ronnewinkel, and

To the best of our knowledge, there is no reasonable explicitlartinetz also studied how the phase shift between the fit-
expression for all the terms in the Hausdorff series. Just likeness landscape and the population response depend on the
Eq. (5), it is, therefore, only of limited use when analyzing fluctuation frequency. Further they numerically demonstrate
the linearized rate equations on dynamic fitness landscapeshat for rapidly fluctuating landscapes, the error threshold

Later in this paper, we make a simple approximation thabccurs when the time average of the fitness falls below the
makes the rate equations one dimensional; time ordering isorresponding static threshold. In this paper, we demonstrate
then no longer necessary and analytical solutions are reldhat all these effects can be studied analytically using a
tively easy to derive. simple approximation.

Much of the work on quasispecies has focused on fitness Figure 1 shows how the concentration of the master se-
landscapes with one gene sequeflitee master sequence quence responds to a sudden, sharp jump in its fithess. When
with superior fithesso compared to all other sequences. the fitness changes it takes some time for the population to
These are viewed as a background with fitness 1. These landeach the new equilibrium. It is this delay that causes a phase
scapes are referred to as single peaked landscapes. The mahift between a periodically changing fitness function and the
reasons why this particular fitness landscape has attractedsponse in the concentrations. The relaxation time of the
much attention is because it is the simplest landscape exhilpopulation to the appropriate equilibrium distribution de-

H(X,Y)=X+Y+%[X,Y]

1
+ (XX YIH XYL YD+ (6)
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X0 which can be solved. Substituting back gives the concentra-
tion of the master sequence
0.675
t
0.67 exW’ f [Qo(s)—l]dn}
0
0.665 xo(t):xo : S .
0.66 1+x0f0 EXp[ J'O(Qa(u)—l)du][a(s)—l]ds
0.655 (10
N 5 G 3 3 75 t Since we are only_ interested i_n the long _time behavior of
0. 645 the system, we can ignore transients carrying memory from
N At initial values. Assuming exfy] Qu(s)—1]ds>1 gives
FIG. 2. Concentration of the master sequence calculated using Q
the approximation 8dashegl and by numerically solving the rate Xo(t) = t 0 .
equationg2) (solid). The fitness is given by=10+5 sin(4). The 1+(1_Q)f exp( f [Q,(u)— 1]du] ds
genomic copying fidelity is given b= 0.7 and the genome length 0 s
v=25. (11

Hdis is a generalization of the static expression for the

pends on both the fitness values of the landscape and t . '
gsymptotic concentration:

mutation rate. For extremely slow and smooth changes in th

fitness the population will effectively reach equilibrium at Qo—1
every point in time. Thus the continued existence of a qua- Xg= ) (12)
sispecies will depend on the local dynamics of the landscape. o-1

When the landscape changes quickly the population will fail
to follow the changes adequately and thus responds to ﬂ}?a
landscape dynamics in a way that is typical of a Iow-pas§iol
filter. The following section examines the fluctuating single
peak landscape in some detail. In particular, we introduce a
approximation that lets us find an analytic form for the re-
laxation time of the population, and the phase lag it intro-
duces in a periodic landscape.

On a static single peaked fitness landscape there is a phase
nsition in the concentration distribution when the copying
elity decreases below a critical val{2,13]. At high mu-
tation rate the selective advantage of the master sequence
ue to its superior fitness is no longer strong enough for the
gene sequences to be localized in sequence space. Instead
they diffuse over the entire sequence space, and the distribu-
tion becomes approximately uniform. This is generally re-
ferred to as the error catastrophe or error threshold and is one
IIl. APPROXIMATE QUASISPECIES DYNAMICS of the main implications of the original quasispecies model.
We now introduce a simple approximation of the modelBY making the same approximation as above, i.e., assuming
presented above. In this approximation, we can solve the rafé® back mutations onto the master sequence, the static land-
equations and find an expression for the concentration of thgc@pe error threshold can be shown to occur wQenl/o.
master sequencey(t). In the limit of long chain length % In other words, the transition occurs when _the selective ad-
>1), we can neglect back mutations from the background tyantage of the master sequence no longer is able to compen-
the master sequence. This is the same approximation usuafité for the loss of offspring due to mutations. This can also
used to simplify the analysis of the static single peaked landP® Seen from Eq(12) that defines the stationary distribution
scape. A simplified one-dimensional version of the rate equalf the master sequence in the static case.

tion of the following form: One has to be careful when discussing the error threshold
on a fluctuating peak. The fitness can, for example, slowly
Xo(t)=Qua(t)Xo(t) —e(t)Xq(t), (8) move from being strong enough to localize the population

around the peak to being so weak that the population delo-

where Q=q" is the copying fidelity of the whole genome calizes, and then back again. If we, however, consider an

ande(t) =(o(t) — 1)xo(t) +1. average over a time scale much longer than the fluctuation

Figure 2 compares the concentration of the master sdime of the fitness peak, a sensible definition of the error
quence calculated by solving approximation 8 and by nuthreshold can be made based on the average concentration of
merically integrating the full rate equatiof2). The figure the master sequence. The time average of the concentrations

shows that the approximation is quite accurate. can be found by rewriting Eq8) as differentials
Since this equation is one dimensional there is no time- g

ordering problem and it can be solved analytically for non- 0Xo a4 B

periodic peak fluctuations. EquatidB) can be transformed Xo _j {Qo()=1-[a()~1]x(D}dt. (13

to a linear form by introducing a new variabigt)=[Q

—Xo(t) /[ (L= Q)xo(t)]. This gives The concentration of the master sequence is positive. The

left-hand side of Eq(13) is, therefore, positive and the last

y(t)=1-[Qa(t)—1]y(1), (9 term in the integrat-[ o(t) — 1]xp(t) on the left-hand side is
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*3 predicts the error threshold to occur at=0.088, which
agrees with the value found by numerically integrating the
equations of motion directly. The analysis in this section

0.8/ o demonstrates that by making the error tail approximation and
reducing the dynamics to one-dimensional form, an analytic

0.6 form exists for the error threshold on fast moving land-
scapes. This one-dimensional formulation removes the need

0.4 to time order the changes in selective advantage of the land-

scape. This allows the integrals for the time history of the
master-sequence concentration to be solved explicitly in Eq.
021 A - —12,13 (10).

0.02 0.04 0.06 0.08 0.1 0.12 0.14 " IV. PHASE SHIFTS ON PERIODIC LANDSCAPES
FIG. 3. Time-averaged quasispecies distribution is shown as a To Study how the master sequence responds to Changes in
function of the error rate,=q— 1. The figure shows the numerical the height of the fithess peak it is convenient to assume that
solution to th(_a full rate equations. The fitne_ss peak is defined aghe fluctuations are periodic. In this case it follows immedi-
o(t)=10+5sin) and the genome length is=25. The eror  gia)y fromFloquet's theorenfalso known as th&loch theo-
threshold is located apn,~0.085, corresponding t@=0.109, (o statistical physigsthat the solutions to the rate equa-
which can be compared to the approximate vaig=0.1 pre- 55 ais0 are periodic with the same frequency. It then
dicted by Eq.(14). makes sense to speak of the amplitude of the oscillations in
_ o . ) concentration and of the phase shift between the concentra-
negative. This implies that faxy(t) to be positive as time o and the fitness. It is intuitively clear that when the fitness
goes to infinity, we must assumi Qo (t)—1]dt>0. The  neay is oscillating slowly(compared to the response time
fluctuatlng_ tlme-dependgnt equivalent to the static IOy O (t)— 1]~ 1) there will be a very small phase shift: the
threshold is, therefore, given by population will have time to reach an equilibrium about ev-
ery value ofo(t). The amplitude of changes in the master-
Q . :i (14) sequence concentration will for the same reason, be as large
fluct. it ¢ &y ° as possible. This result, together with the time-averaging ef-
fect found in the previous section, indicates that the popula-
This shows that the error threshold on a fluctuating fitneséon responds to the driving of the environment with a low-
peak is determined by the time average of the fitness, if th@ass filter effect. In one-dimensional population genetic
fluctuations are fast compared to the response time of th@odels this phenomenon has been noted for some[tishe
population. 16,18. Wilke, Ronnewinkal, and Martinet11] demon-
Equation(11) indicates that the response time of the sys-strated via simulations that the same filtering occurred to
tem is approximately given byQo(t)—1]7%, i.e., the rela- quasispecies evolution on a periodically fluctuating single
tive growth of the master sequence Compared to the baclp.eak. NOtlng that the maxima and minima in concentration
ground. For the time average mentioned above to be afccurs wherko=0, we can find a relation between the phase
interesting parameter the fluctuations of the fitness peakhift (between the concentration and fitness fluctuaficarsd
must, therefore, be faster than this response time; only foihe amplitude of the fitness fluctuations. Ligt,., be the
this kind of environmental dynamics is it sensible to talk intime when the concentration has a maximum. Similarly, the
terms of the average concentration of the master sequendéness is at a maximum at tintg ... Thus the phase shift
Thus, if the fluctuations occur on a time scale faster than th@etween the two i$=1t, na—t;max- From Eq.(8) the con-
response time of the quasispecies, then the error threshold gion for the maximum value of, during a full cycle can be
defined by Eq(14). For extremely slow changes the systemderived
will effectively be in equilibrium around the current value of
the fitness. For slightly faster changes the response of the Qo(tymaxt ) —1
population will lag somewhat behind the changes in selective max{ Xo(t) ]= ottty —1 (15
environment. In these cases it is more interesting to study the omaxt e
minimal concentration of the master sequence, which occurs
when the fitness peak has a minimyas we shall see later

In general, there is no closed analytic expression for this
the phase shift decreases when the fluctuation frequency dghase shift(s), or thg response amphtude. of the master-
Sequence concentration. When the fluctuations of the fitness

Cre\jlvi‘?n the full replicator equations for a rapidly fluctuatin peak is a small harmonic oscillation EQL5) becomes ana-
P q picty 9 tically tractable. For such fluctuations

peak are numerically integrated, the time-averaged quasispé/—
cies distribution displays an error catastrophe at high error

ratesu=1—g. In Fig. 3 the fitness peak fluctuates periodi- y(O)=1-[Qo(t)=1]y(V), (16)
cally with o(t)=10+5 sint). The average fitness is given
by (o);=10 and the genome lengih= 25 and thus Eq(14) o(t)=oc+esin(wt). (17)
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FIG. 4. Response in concentration of the master sequasodid
line) as the fitness peak oscillates accordingr{@) = 10+ sin(4t).
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0.5 1 5 10 50

FIG. 5. Phase shift as a function of the peribe 27/ w. The

The genomic copying fidelity i€)=0.7. The dashed line shows dasheq line is aprediction using HQQ) and the solid is derived by
o(t), scaled to fit in the plot. Note the phase shift between théhumerically solving the rate equatiort8). Parameters used are

fithess function and the concentration response.

From Eq.(11) it is reasonable to assume the solution to be o

the formy(t)=1/(Qo—1)+u(t), whereu(t) is small com-
pared to the average. Ignoring higher-order terms(8qcan
be written in terms of the perturbatiar(t) as

. €Q sin(wt)

u(t)=(1—Qo)u(t)— T0o-1 (18)

This differential equation can be solved to obtain
) <Q in(wt—8), (19

= — — | —
T e e pErer
_ w

tan(8) = Oo—1 (20

In Eqg. (19) and(20) transients have been ignored since they;

o=10+sin(wt), Q=0.7, andv=25.

fIions increases, the amplitude of the concentration response

decreases and the phase shift converges/® Figure 4
shows how a population responds to harmonic oscillations of
the fitness peak. The phase shift makes the concentration of
the master sequence reach its maximum when the actual fit-
ness has already decreased below maximum.

V. CONCLUSIONS

In this paper, we have shown that the time dynamics of a
quasispecies on a fluctuating peak can be studied under the
standard no back-mutation approximation. The general time-
ordering problem stemming from a time-dependent land-
scape disappears since the rate equation becomes one dimen-
sional. We show that the time-dependent equivalent to the
static error threshold is determined by the time average of the
fluctuations of the fitness peak. An expression for the typical
response time for a population is given in terms of copying
idelity and selection pressure. We also show that for small

decay exponentially as~ (2~ 1", Thus the frequency of the periodic fluctuations the time dynamics of the population has

oscillations is normalized by th@averagg response rate of

the populationrQo—1.
Substituting this back into the expression fg(t) gives

X
%)=  e(l-Q)sinwt—0)
(0-DV(Qu—1)2+w?

wherex=(Qo—1)/(c—1).

(21)

a phase shift and a low-pass filter amplitude response. Ana-
lytic expressions for the phase shift and the amplitude are
derived in the special case of small harmonically oscillating
fluctuations.
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